Z = 2

Mo  $K\alpha$  radiation

 $0.20 \times 0.18 \times 0.16 \ \mathrm{mm}$ 

 $\mu = 0.10 \text{ mm}^{-1}$ 

T = 291 K

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# *N*-Benzyl-6-deoxy-3,6-iminomethylene-1,2,3,5-O-tetraacetyl- $\alpha$ -D-1(S)-epiallofuranose

#### Qiurong Zhang, Chunli Wu, Pengyun Li, Weiyan Cheng and Hongmin Liu\*

New Drug Reseach & Development Center, Zhengzhou Univresity, Zhengzhou 450001, People's Republic of China Correspondence e-mail: zqr409@163.com

Received 6 May 2011; accepted 24 May 2011

Key indicators: single-crystal X-ray study; T = 291 K; mean  $\sigma$ (C–C) = 0.005 Å; R factor = 0.043; wR factor = 0.107; data-to-parameter ratio = 8.6.

The molecule of the title compound,  $C_{22}H_{27}NO_9$ , an azasugar derivative, consists of one benzene ring and two fused rings, which have the *cis* arrangement at the ring junctions, and gives a V-shaped geometry. The interplanar angle between the fiveand six-membered rings is 65.69 (11)°. The crystal structure is stablized by weak intermolecular  $C-H\cdots O$  hydrogen bonds.

#### **Related literature**

For the one-pot reaction used to obtain the title compound, see: Saito *et al.* (2002); Deshpandea *et al.* (2004). For the activity of azasugars, see: Compain *et al.* (2001, 2003). For their powerful inhibitory aptitude towards carbohydrate-processing enzymes, see: Guaragna *et al.* (2009).



**Experimental** 

Crystal data C<sub>22</sub>H<sub>27</sub>NO<sub>9</sub>

 $M_r = 449.45$ 

| Monoclinic, P2 <sub>1</sub>   |  |
|-------------------------------|--|
| a = 8.1768 (16)  Å            |  |
| b = 9.0613 (18)  Å            |  |
| c = 15.591 (3) Å              |  |
| $\beta = 94.56 \ (3)^{\circ}$ |  |
| V = 1151.5 (4) Å <sup>3</sup> |  |

### Data collection

| Rigaku R-AXIS-IV diffractometer<br>Absorption correction: multi-scan | 4341 measured reflections<br>2503 independent reflections<br>2173 reflections with $L > 2\sigma(t)$ |
|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| $T_{\rm min} = 0.980, \ T_{\rm max} = 0.984$                         | $R_{\rm int} = 0.033$                                                                               |
| Refinement                                                           |                                                                                                     |

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.043 & 1 \text{ restraint} \\ wR(F^2) &= 0.107 & H\text{-atom parameters constrained} \\ S &= 1.09 & \Delta\rho_{\text{max}} = 0.15 \text{ e } \text{\AA}^{-3} \\ 2503 \text{ reflections} & \Delta\rho_{\text{min}} = -0.13 \text{ e } \text{\AA}^{-3} \\ 290 \text{ parameters} \end{split}$$

#### Table 1

Hydrogen-bond geometry (Å, °).

| $D - H \cdots A$               | D-H  | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdots A$ |
|--------------------------------|------|-------------------------|--------------|---------------------------|
| $C15-H15C\cdots O6^{i}$        | 0.96 | 2.33                    | 3.161 (5)    | 144                       |
| Summetry code: (i) $x = 1 y_z$ |      |                         |              |                           |

Symmetry code: (i) x - 1, y, z.

Data collection: *R-AXIS II Software* (Rigaku, 1997); cell refinement: *R-AXIS II Software*; data reduction: *R-AXIS II Software*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXL97*.

We gratefully acknowledge the financial support of the National Natural Science Foundation of China (20572103).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZK2010).

#### References

- Compain, P. & Martin, O. R. (2001). Bioorg. Med. Chem. 9, 3077–3092.
  Compain, P. & Martin, O. R. (2003). Curr. Top. Med. Chem. 3, 541–560.
  Deshpandea, S. G. & Pathak, T. (2004). Tetrahedron Lett. 45, 2255–2258.
  Guaragna, A., D'Alonzo, D., Paolella, C. & Palumbo, G. (2009). Tetrahedron Lett. 50, 2045–2047.
- Rigaku (1997). *R-AXIS II Software*. Rigaku Corporation, Tokyo, Japan.
- Saito, Y., Zevacob, T. A. & Agrofoglioa, L. A. (2002). *Tetrahedron*, **58**, 9593–9603.
- Sheldrick, G. M. (1996). *SADABS*. University of Göttingen, Germany. Sheldrick, G. M. (2008). *Acta Cryst.* A**64**, 112–122.

#### Acta Cryst. (2011). E67, o1545 [doi:10.1107/S1600536811019702]

### *N*-Benzyl-6-deoxy-3,6-iminomethylene-1,2,3,5-*O*-tetraacetyl-*Q*-D-1(*S*)-epiallofuranose

# Q. Zhang, C. Wu, P. Li, W. Cheng and H. Liu

#### Comment

Owing to their powerful inhibitory aptitude towards carbohydrate processing enzymes, azasugars undoubtedly represent one of the most attractive classes of carbohydrate mimetics (Guaragna *et al.*, 2009). As a contribution to the azasugars chemistry, we report here the crystal structure of the title compound, which was obtained under one-pot reaction (Sachin *et al.*, 2004 and Saito *et al.*, 2002) of *N*-benzyl-6-deoxy- 3,6-imino-methylene-1,2-*O*-isopropylidene- $\alpha$ -*D*-allofuranose.

In the crystal structure of the title compound (I) (Fig. 1), there are two fused rings (tetrahydrofuran ring and piperidine ring) having the *cis* arrangement at the ring junctions, giving a V-shaped molecule. The interplanar angle between the five and six membered rings is  $65.69 (11)^\circ$ . The torsion angles O1—C1—C2—C3, O1—C1—C2—O2 and C4—O4—C1—O1 around the carbon of hemiacetal group(C1) are 109.0 (2), -136.5 (2) and -137.1 (2)° respectively, which can confirm the hemiacetal group is  $\beta$  configuration. The molecules are linked into a framework by means of weak C—H···O hydrogen bonds (Table 1), one of which occurs between CH<sub>3</sub> of C5-acetoxy moiety and O atoms of carbonyl of C1-acetoxy moiety, and three of which occur among CH and CH<sub>2</sub>groups of five and six membered rings and O atoms of carbonyl of three acetoxy moieties (Fig. 2).

#### Experimental

*N*-benzyl-6-deoxy-3,6-imino-methylene- 1,2-*O*-isopropylidene- $\alpha$ -*D*-allofuranose (2.0 g, 6.2 mmol) was dissolved in 85% acetic acid (10 ml). A solution of 15% hydrochoric acid was added to this mixture. The resulting mixture was stirred for about 6 h at ambient temperature. After the material was consumed, the reaction mixture was evaporated under reduced pressure to dryness to yield yellow solid, which was directly used without purification. Acetic anhydride (5 ml) was added to the yellow solid in dry pyridine (5 ml). The mixture was stirred for about 5 h at ambient temperature. The reaction mixture was adjusted to neutral with saturated NaHCO<sub>3</sub> under ice bath and filtered. The filtrate was extracted with EtOAc, dried (Na<sub>2</sub>SO<sub>4</sub>), and evaporated to obtained colorless oily. The oily was recrystallized from methanol to give the title compound as a white crystal. Crystals suitable for X-ray analysis were in two weeks by slow evaporation of methanol solution of the title compound at room temperature. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\sigma$ : 7.25–7.33 (5 H, m), 6.03 (1 H, s), 5.32 (1 H, s), 5.21 (1 H, m), 4.40 (1 H, d, *J* = 3.2 Hz), 3.62 (2 H, dd), 3.34 (1 H, d, *J* = 13.6 Hz), 2.81 (1 H, m), 2.54 (1 H, d, *J* = 13.6 Hz), 2.42 (1 H, m), 2.09 (3 H, s), 2.08 (3 H, s), 2.07 (3 H, s), 2.04 (3 H, s); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\sigma$ : 170.2, 169.3, 168.9, 168.6, 137.0, 128.7, 128.3, 127.4, 99.3, 80.2, 77.4, 76.5, 68.1, 61.4, 51.4, 49.9, 21.1, 21.1, 21.0, 20.5.

### Refinement

All H atoms were placed geometrically and treated as riding on their parent atoms with C—H are 0.96 Å (methylene) or 0.93 Å (aromatic), 0.82 Å (hydroxyl)and  $U_{iso}(H) = 1.2U_{eq}(C)$ .

**Figures** 



Fig. 1. The molecular structure of the compound, with atom labels and 30% probability displacement ellipsoids for non-H atoms.

Fig. 2. Packing of the molecules crystal structure of title compound, the molecules are connected by the C—H $\cdots$ O hydrogen bonds.

## N-Benzyl-6-deoxy-3,6-iminomethylene-1,2,3,5-O-tetraacetyl- α-D-1(S)-epiallofuranose

Crystal data

| C <sub>22</sub> H <sub>27</sub> NO <sub>9</sub> | F(000) = 476                                          |
|-------------------------------------------------|-------------------------------------------------------|
| $M_r = 449.45$                                  | $D_{\rm x} = 1.296 {\rm Mg} {\rm m}^{-3}$             |
| Monoclinic, P21                                 | Mo <i>K</i> $\alpha$ radiation, $\lambda = 0.71073$ Å |
| Hall symbol: P 2yb                              | Cell parameters from 399 reflections                  |
| a = 8.1768 (16)  Å                              | $\theta = 2-25.1^{\circ}$                             |
| <i>b</i> = 9.0613 (18) Å                        | $\mu = 0.10 \text{ mm}^{-1}$                          |
| c = 15.591 (3)  Å                               | T = 291  K                                            |
| $\beta = 94.56 \ (3)^{\circ}$                   | PRISMATIC, colorless                                  |
| $V = 1151.5 (4) \text{ Å}^3$                    | $0.20\times0.18\times0.16~mm$                         |
| Z = 2                                           |                                                       |

## Data collection

| Rigaku R-AXIS-IV<br>diffractometer                             | 2503 independent reflections                                              |
|----------------------------------------------------------------|---------------------------------------------------------------------------|
| Radiation source: fine-focus sealed tube                       | 2173 reflections with $I > 2\sigma(I)$                                    |
| graphite                                                       | $R_{\rm int} = 0.033$                                                     |
| Detector resolution: 0 pixels mm <sup>-1</sup>                 | $\theta_{\text{max}} = 26.5^{\circ}, \ \theta_{\text{min}} = 1.3^{\circ}$ |
| Oscillation frames scans                                       | $h = 0 \rightarrow 10$                                                    |
| Absorption correction: multi-scan<br>(SADABS: Sheldrick, 1996) | $k = -11 \rightarrow 11$                                                  |
| $T_{\min} = 0.980, \ T_{\max} = 0.984$                         | $l = -19 \rightarrow 19$                                                  |
| 4341 measured reflections                                      |                                                                           |

Refinement

Refinement on  $F^2$ 

Secondary atom site location: difference Fourier map

| Least-squares matrix: full                                     | Hydrogen site location: inferred from neighbouring sites                                        |
|----------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| $R[F^2 > 2\sigma(F^2)] = 0.043$                                | H-atom parameters constrained                                                                   |
| $wR(F^2) = 0.107$                                              | $w = 1/[\sigma^2(F_o^2) + (0.0659P)^2]$<br>where $P = (F_o^2 + 2F_c^2)/3$                       |
| S = 1.09                                                       | $(\Delta/\sigma)_{max} < 0.001$                                                                 |
| 2503 reflections                                               | $\Delta \rho_{max} = 0.15 \text{ e} \text{ Å}^{-3}$                                             |
| 290 parameters                                                 | $\Delta \rho_{min} = -0.13 \text{ e } \text{\AA}^{-3}$                                          |
| 1 restraint                                                    | Extinction correction: <i>SHELXL</i> ,<br>$Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$ |
| Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.040 (5)                                                               |

## Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

|     | x           | У          | z            | $U_{\rm iso}*/U_{\rm eq}$ |
|-----|-------------|------------|--------------|---------------------------|
| N1  | 0.1159 (3)  | 0.9181 (3) | 0.34251 (14) | 0.0450 (6)                |
| 01  | 0.5766 (2)  | 1.1411 (2) | 0.25616 (13) | 0.0515 (5)                |
| O2  | 0.5092 (2)  | 0.8192 (2) | 0.13055 (12) | 0.0471 (5)                |
| O3  | 0.2300 (2)  | 0.7356 (2) | 0.19908 (12) | 0.0439 (5)                |
| O4  | 0.3209 (2)  | 1.1154 (2) | 0.18522 (13) | 0.0461 (5)                |
| O5  | -0.0199 (2) | 1.1524 (2) | 0.15811 (13) | 0.0489 (5)                |
| O6  | 0.5922 (3)  | 1.3316 (3) | 0.16484 (19) | 0.0771 (7)                |
| O7  | 0.7528 (3)  | 0.7358 (3) | 0.18663 (16) | 0.0700 (7)                |
| O8  | 0.4156 (3)  | 0.5948 (3) | 0.27378 (14) | 0.0589 (6)                |
| 09  | -0.1360 (4) | 1.0104 (3) | 0.05304 (17) | 0.0886 (9)                |
| C1  | 0.4843 (3)  | 1.0630 (3) | 0.18939 (19) | 0.0438 (6)                |
| H1A | 0.5311      | 1.0805     | 0.1343       | 0.053*                    |
| C2  | 0.4826 (3)  | 0.8971 (3) | 0.20843 (16) | 0.0393 (6)                |
| H2A | 0.5621      | 0.8696     | 0.2561       | 0.047*                    |
| C3  | 0.3042 (3)  | 0.8717 (3) | 0.22978 (17) | 0.0376 (6)                |
| C4  | 0.2149 (3)  | 0.9901 (3) | 0.17496 (18) | 0.0391 (6)                |
| H4A | 0.2062      | 0.9591     | 0.1146       | 0.047*                    |
| C5  | 0.0450 (3)  | 1.0225 (3) | 0.20286 (18) | 0.0428 (6)                |
| H5A | -0.0268     | 0.9385     | 0.1872       | 0.051*                    |
| C6  | 0.0463 (3)  | 1.0483 (4) | 0.29899 (19) | 0.0486 (7)                |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

| H6A  | 0.1118      | 1.1345     | 0.3153       | 0.058*      |
|------|-------------|------------|--------------|-------------|
| H6B  | -0.0645     | 1.0647     | 0.3149       | 0.058*      |
| C7   | 0.2889 (3)  | 0.8982 (3) | 0.32508 (16) | 0.0429 (6)  |
| H7A  | 0.3346      | 0.8149     | 0.3579       | 0.052*      |
| H7B  | 0.3509      | 0.9855     | 0.3433       | 0.052*      |
| C8   | 0.6243 (3)  | 1.2802 (4) | 0.2351 (3)   | 0.0569 (8)  |
| C9   | 0.7193 (4)  | 1.3524 (5) | 0.3088 (3)   | 0.0813 (12) |
| H9A  | 0.7512      | 1.4497     | 0.2923       | 0.122*      |
| H9B  | 0.8155      | 1.2951     | 0.3251       | 0.122*      |
| Н9С  | 0.6525      | 1.3590     | 0.3566       | 0.122*      |
| C10  | 0.6505 (3)  | 0.7422 (3) | 0.1276 (2)   | 0.0496 (7)  |
| C11  | 0.6557 (5)  | 0.6680 (5) | 0.0432 (2)   | 0.0733 (10) |
| H11A | 0.7565      | 0.6139     | 0.0420       | 0.110*      |
| H11B | 0.6494      | 0.7407     | -0.0018      | 0.110*      |
| H11C | 0.5646      | 0.6013     | 0.0345       | 0.110*      |
| C12  | 0.2937 (3)  | 0.6055 (3) | 0.2257 (2)   | 0.0473 (7)  |
| C13  | 0.1927 (5)  | 0.4817 (4) | 0.1878 (3)   | 0.0770 (11) |
| H13A | 0.2399      | 0.3895     | 0.2075       | 0.115*      |
| H13B | 0.1899      | 0.4862     | 0.1262       | 0.115*      |
| H13C | 0.0831      | 0.4895     | 0.2054       | 0.115*      |
| C14  | -0.1022 (4) | 1.1307 (4) | 0.08049 (19) | 0.0501 (7)  |
| C15  | -0.1374 (4) | 1.2725 (4) | 0.0348 (2)   | 0.0664 (10) |
| H15A | -0.1958     | 1.2534     | -0.0199      | 0.100*      |
| H15B | -0.0361     | 1.3219     | 0.0262       | 0.100*      |
| H15C | -0.2031     | 1.3339     | 0.0687       | 0.100*      |
| C16  | 0.0969 (4)  | 0.9206 (5) | 0.43531 (19) | 0.0587 (8)  |
| H16A | 0.1255      | 1.0180     | 0.4576       | 0.070*      |
| H16B | 0.1727      | 0.8504     | 0.4637       | 0.070*      |
| C17  | -0.0747 (3) | 0.8835 (4) | 0.45673 (18) | 0.0511 (8)  |
| C18  | -0.1365 (5) | 0.9410 (6) | 0.5301 (2)   | 0.0842 (14) |
| H18A | -0.0748     | 1.0086     | 0.5639       | 0.101*      |
| C19  | -0.2898 (5) | 0.8983 (8) | 0.5533 (3)   | 0.107 (2)   |
| H19A | -0.3307     | 0.9381     | 0.6023       | 0.128*      |
| C20  | -0.3806 (4) | 0.7987 (7) | 0.5048 (3)   | 0.0886 (15) |
| H20A | -0.4820     | 0.7684     | 0.5215       | 0.106*      |
| C21  | -0.3232 (4) | 0.7438 (5) | 0.4322 (2)   | 0.0690 (10) |
| H21A | -0.3867     | 0.6778     | 0.3981       | 0.083*      |
| C22  | -0.1714 (4) | 0.7852 (4) | 0.4087 (2)   | 0.0551 (8)  |
| H22A | -0.1332     | 0.7456     | 0.3590       | 0.066*      |
|      |             |            |              |             |

# Atomic displacement parameters $(Å^2)$

|    | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$    | $U^{23}$     |
|----|-------------|-------------|-------------|--------------|-------------|--------------|
| N1 | 0.0465 (12) | 0.0503 (14) | 0.0377 (12) | 0.0078 (11)  | 0.0004 (9)  | 0.0007 (11)  |
| O1 | 0.0520 (11) | 0.0460 (12) | 0.0553 (12) | -0.0058 (10) | -0.0042 (8) | -0.0094 (10) |
| O2 | 0.0529 (10) | 0.0469 (12) | 0.0407 (10) | 0.0098 (10)  | -0.0010 (8) | -0.0082 (9)  |
| O3 | 0.0525 (10) | 0.0281 (9)  | 0.0493 (11) | 0.0011 (8)   | -0.0072 (8) | -0.0006 (9)  |
| O4 | 0.0463 (10) | 0.0301 (10) | 0.0609 (12) | -0.0010 (8)  | -0.0033 (8) | 0.0031 (9)   |

| 05  | 0.0541 (11) | 0.0351 (10) | 0.0551 (12) | 0.0073 (9)   | -0.0101 (9)  | 0.0059 (9)   |
|-----|-------------|-------------|-------------|--------------|--------------|--------------|
| O6  | 0.0976 (18) | 0.0516 (15) | 0.0848 (19) | -0.0140 (14) | 0.0235 (14)  | -0.0001 (15) |
| 07  | 0.0537 (11) | 0.0827 (18) | 0.0724 (15) | 0.0187 (13)  | -0.0030 (11) | -0.0070 (14) |
| 08  | 0.0694 (13) | 0.0403 (12) | 0.0643 (14) | 0.0104 (10)  | -0.0114 (11) | 0.0051 (10)  |
| O9  | 0.132 (2)   | 0.0629 (19) | 0.0632 (16) | -0.0026 (16) | -0.0376 (15) | 0.0019 (14)  |
| C1  | 0.0451 (14) | 0.0417 (16) | 0.0437 (15) | -0.0028 (12) | -0.0019 (11) | -0.0016 (12) |
| C2  | 0.0458 (13) | 0.0380 (15) | 0.0333 (13) | 0.0064 (11)  | -0.0017 (10) | -0.0032 (11) |
| C3  | 0.0440 (13) | 0.0284 (13) | 0.0389 (14) | 0.0011 (11)  | -0.0059 (10) | -0.0008 (11) |
| C4  | 0.0478 (14) | 0.0299 (14) | 0.0382 (14) | -0.0005 (11) | -0.0048 (11) | -0.0011 (11) |
| C5  | 0.0453 (14) | 0.0304 (14) | 0.0505 (16) | 0.0041 (12)  | -0.0097 (12) | 0.0031 (12)  |
| C6  | 0.0478 (14) | 0.0480 (18) | 0.0493 (17) | 0.0100 (13)  | -0.0006 (12) | -0.0023 (14) |
| C7  | 0.0462 (13) | 0.0450 (16) | 0.0362 (13) | 0.0053 (12)  | -0.0052 (10) | 0.0024 (13)  |
| C8  | 0.0457 (15) | 0.0437 (18) | 0.082 (2)   | -0.0031 (13) | 0.0118 (15)  | -0.0152 (17) |
| C9  | 0.0606 (19) | 0.062 (2)   | 0.119 (3)   | -0.0016 (18) | -0.0048 (19) | -0.040 (2)   |
| C10 | 0.0489 (14) | 0.0401 (15) | 0.0604 (19) | 0.0019 (13)  | 0.0086 (13)  | 0.0001 (15)  |
| C11 | 0.084 (2)   | 0.070 (2)   | 0.068 (2)   | 0.012 (2)    | 0.0200 (17)  | -0.020 (2)   |
| C12 | 0.0549 (16) | 0.0341 (15) | 0.0523 (17) | 0.0037 (13)  | 0.0014 (13)  | 0.0062 (13)  |
| C13 | 0.086 (2)   | 0.042 (2)   | 0.099 (3)   | -0.0069 (18) | -0.015 (2)   | 0.003 (2)    |
| C14 | 0.0511 (15) | 0.054 (2)   | 0.0439 (16) | 0.0042 (14)  | -0.0049 (12) | 0.0069 (15)  |
| C15 | 0.0665 (18) | 0.068 (2)   | 0.064 (2)   | 0.0137 (17)  | -0.0023 (15) | 0.0268 (18)  |
| C16 | 0.0624 (18) | 0.074 (2)   | 0.0394 (16) | 0.0000 (17)  | 0.0001 (13)  | -0.0014 (16) |
| C17 | 0.0490 (15) | 0.064 (2)   | 0.0404 (15) | 0.0121 (15)  | 0.0019 (12)  | 0.0024 (15)  |
| C18 | 0.074 (2)   | 0.117 (4)   | 0.061 (2)   | 0.002 (2)    | 0.0043 (18)  | -0.034 (2)   |
| C19 | 0.072 (2)   | 0.188 (6)   | 0.064 (2)   | 0.006 (3)    | 0.0209 (19)  | -0.044 (3)   |
| C20 | 0.0533 (17) | 0.147 (5)   | 0.066 (2)   | 0.004 (3)    | 0.0058 (16)  | -0.003 (3)   |
| C21 | 0.0557 (17) | 0.090 (3)   | 0.060 (2)   | 0.0025 (19)  | -0.0044 (14) | 0.001 (2)    |
| C22 | 0.0602 (16) | 0.060 (2)   | 0.0438 (16) | 0.0102 (16)  | -0.0012 (13) | -0.0006 (14) |

# Geometric parameters (Å, °)

| N1—C6  | 1.454 (4) | C8—C9    | 1.487 (5) |
|--------|-----------|----------|-----------|
| N1—C16 | 1.468 (4) | С9—Н9А   | 0.9600    |
| N1—C7  | 1.472 (3) | С9—Н9В   | 0.9600    |
| O1—C8  | 1.368 (4) | С9—Н9С   | 0.9600    |
| O1—C1  | 1.424 (3) | C10—C11  | 1.483 (5) |
| O2—C10 | 1.353 (3) | C11—H11A | 0.9600    |
| O2—C2  | 1.436 (3) | C11—H11B | 0.9600    |
| O3—C12 | 1.341 (3) | C11—H11C | 0.9600    |
| O3—C3  | 1.440 (3) | C12—C13  | 1.487 (5) |
| O4—C1  | 1.415 (3) | C13—H13A | 0.9600    |
| O4—C4  | 1.429 (3) | C13—H13B | 0.9600    |
| O5—C14 | 1.352 (4) | С13—Н13С | 0.9600    |
| O5—C5  | 1.447 (3) | C14—C15  | 1.486 (5) |
| O6—C8  | 1.200 (4) | C15—H15A | 0.9600    |
| O7—C10 | 1.194 (4) | C15—H15B | 0.9600    |
| O8—C12 | 1.203 (3) | C15—H15C | 0.9600    |
| O9—C14 | 1.195 (4) | C16—C17  | 1.506 (4) |
| C1—C2  | 1.532 (4) | C16—H16A | 0.9700    |
| C1—H1A | 0.9800    | C16—H16B | 0.9700    |
|        |           |          |           |

| C2—C3                   | 1.539 (4)   | C17—C22           | 1.374 (4) |
|-------------------------|-------------|-------------------|-----------|
| C2—H2A                  | 0.9800      | C17—C18           | 1.389 (5) |
| С3—С7                   | 1.520 (4)   | C18—C19           | 1.387 (6) |
| C3—C4                   | 1.522 (4)   | C18—H18A          | 0.9300    |
| C4—C5                   | 1.517 (4)   | C19—C20           | 1.360 (7) |
| C4—H4A                  | 0.9800      | C19—H19A          | 0.9300    |
| C5—C6                   | 1.516 (4)   | C20—C21           | 1.355 (6) |
| С5—Н5А                  | 0.9800      | C20—H20A          | 0.9300    |
| С6—Н6А                  | 0.9700      | C21—C22           | 1.374 (5) |
| С6—Н6В                  | 0.9700      | C21—H21A          | 0.9300    |
| С7—Н7А                  | 0.9700      | C22—H22A          | 0.9300    |
| С7—Н7В                  | 0.9700      |                   |           |
| C6—N1—C16               | 112.3 (2)   | Н9А—С9—Н9В        | 109.5     |
| C6—N1—C7                | 111.0 (2)   | С8—С9—Н9С         | 109.5     |
| C16—N1—C7               | 111.2 (2)   | Н9А—С9—Н9С        | 109.5     |
| C8—O1—C1                | 115.3 (3)   | Н9В—С9—Н9С        | 109.5     |
| C10—O2—C2               | 118.0 (2)   | O7—C10—O2         | 123.1 (3) |
| C12—O3—C3               | 120.49 (18) | O7—C10—C11        | 126.4 (3) |
| C1—O4—C4                | 107.5 (2)   | O2-C10-C11        | 110.4 (3) |
| C14—O5—C5               | 116.8 (2)   | C10-C11-H11A      | 109.5     |
| O4—C1—O1                | 108.1 (2)   | C10—C11—H11B      | 109.5     |
| O4—C1—C2                | 108.4 (2)   | H11A—C11—H11B     | 109.5     |
| O1—C1—C2                | 111.0 (2)   | C10—C11—H11C      | 109.5     |
| O4—C1—H1A               | 109.8       | H11A—C11—H11C     | 109.5     |
| O1—C1—H1A               | 109.8       | H11B—C11—H11C     | 109.5     |
| C2—C1—H1A               | 109.8       | O8—C12—O3         | 123.1 (3) |
| O2—C2—C1                | 108.3 (2)   | O8—C12—C13        | 126.4 (3) |
| O2—C2—C3                | 108.6 (2)   | O3—C12—C13        | 110.5 (3) |
| C1—C2—C3                | 102.2 (2)   | С12—С13—Н13А      | 109.5     |
| O2—C2—H2A               | 112.4       | С12—С13—Н13В      | 109.5     |
| C1—C2—H2A               | 112.4       | H13A—C13—H13B     | 109.5     |
| C3—C2—H2A               | 112.4       | С12—С13—Н13С      | 109.5     |
| O3—C3—C7                | 113.3 (2)   | H13A—C13—H13C     | 109.5     |
| O3—C3—C4                | 104.26 (19) | H13B—C13—H13C     | 109.5     |
| C7—C3—C4                | 111.4 (2)   | 09-014-05         | 122.5 (3) |
| 03—C3—C2                | 116.0 (2)   | 09-C14-C15        | 125.9 (3) |
| C7—C3—C2                | 110.0 (2)   | 05                | 111.5 (3) |
| C4-C3-C2                | 101.2 (2)   | C14—C15—H15A      | 109.5     |
| 04                      | 112.0(2)    | C14—C15—H15B      | 109.5     |
| 04                      | 103.7(2)    | H15A—C15—H15B     | 109.5     |
| $C_{5} - C_{4} - C_{3}$ | 112.6 (2)   | C14—C15—H15C      | 109.5     |
| 04—C4—H4A               | 109.4       | H15A - C15 - H15C | 109.5     |
| C5—C4—H4A               | 109.4       | H15B-C15-H15C     | 109.5     |
| $C_3 - C_4 - H_4 A$     | 109.4       | N1-C16-C17        | 112.9 (2) |
| 05-05-06                | 109.1       | N1 - C16 - H16A   | 109.0     |
| 05-05-04                | 109.2 (2)   | C17—C16—H16A      | 109.0     |
| C6-C5-C4                | 112.3 (2)   | N1-C16-H16B       | 109.0     |
| O5-C5-H5A               | 108.8       | C17—C16—H16B      | 109.0     |
| C6_C5_H5A               | 108.8       |                   | 107.8     |
| 00 05-1154              | 100.0       |                   | 107.0     |

| С4—С5—Н5А    | 108.8      | C22—C17—C18     | 117.5 (3)  |
|--------------|------------|-----------------|------------|
| N1—C6—C5     | 107.9 (2)  | C22—C17—C16     | 122.0 (3)  |
| N1—C6—H6A    | 110.1      | C18—C17—C16     | 120.4 (3)  |
| С5—С6—Н6А    | 110.1      | C19—C18—C17     | 120.4 (4)  |
| N1—C6—H6B    | 110.1      | C19—C18—H18A    | 119.8      |
| С5—С6—Н6В    | 110.1      | C17—C18—H18A    | 119.8      |
| H6A—C6—H6B   | 108.4      | C20-C19-C18     | 120.3 (3)  |
| N1—C7—C3     | 110.8 (2)  | С20—С19—Н19А    | 119.8      |
| N1—C7—H7A    | 109.5      | C18—C19—H19A    | 119.8      |
| С3—С7—Н7А    | 109.5      | C21—C20—C19     | 119.9 (4)  |
| N1—C7—H7B    | 109.5      | C21—C20—H20A    | 120.0      |
| С3—С7—Н7В    | 109.5      | С19—С20—Н20А    | 120.0      |
| H7A—C7—H7B   | 108.1      | C20—C21—C22     | 120.2 (4)  |
| O6—C8—O1     | 122.1 (3)  | C20—C21—H21A    | 119.9      |
| O6—C8—C9     | 126.7 (4)  | C22—C21—H21A    | 119.9      |
| O1—C8—C9     | 111.2 (4)  | C17—C22—C21     | 121.7 (3)  |
| С8—С9—Н9А    | 109.5      | C17—C22—H22A    | 119.2      |
| С8—С9—Н9В    | 109.5      | C21—C22—H22A    | 119.2      |
| C4—O4—C1—O1  | -137.1 (2) | O4—C4—C5—C6     | -67.2 (3)  |
| C4—O4—C1—C2  | -16.8 (3)  | C3—C4—C5—C6     | 49.2 (3)   |
| C8—O1—C1—O4  | -78.8 (3)  | C16—N1—C6—C5    | -170.1 (2) |
| C8—O1—C1—C2  | 162.5 (2)  | C7—N1—C6—C5     | 64.6 (3)   |
| C10—O2—C2—C1 | 113.2 (3)  | O5-C5-C6-N1     | -178.5 (2) |
| C10—O2—C2—C3 | -136.5 (2) | C4—C5—C6—N1     | -57.5 (3)  |
| O4—C1—C2—O2  | 105.0 (2)  | C6—N1—C7—C3     | -63.0(3)   |
| O1—C1—C2—O2  | -136.5 (2) | C16—N1—C7—C3    | 171.1 (3)  |
| O4—C1—C2—C3  | -9.6 (3)   | O3—C3—C7—N1     | -65.2 (3)  |
| O1—C1—C2—C3  | 109.0 (2)  | C4—C3—C7—N1     | 51.9 (3)   |
| C12—O3—C3—C7 | -67.5 (3)  | C2—C3—C7—N1     | 163.2 (2)  |
| C12—O3—C3—C4 | 171.3 (2)  | C1—O1—C8—O6     | -1.0 (4)   |
| C12—O3—C3—C2 | 61.0 (3)   | C1—O1—C8—C9     | 179.9 (2)  |
| 02—C2—C3—O3  | 27.8 (3)   | C2—O2—C10—O7    | 0.3 (4)    |
| C1—C2—C3—O3  | 142.1 (2)  | C2              | 179.3 (3)  |
| O2—C2—C3—C7  | 157.9 (2)  | C3—O3—C12—O8    | -1.8 (4)   |
| C1—C2—C3—C7  | -87.8 (3)  | C3—O3—C12—C13   | 177.9 (3)  |
| O2—C2—C3—C4  | -84.3 (2)  | C5—O5—C14—O9    | 7.6 (5)    |
| C1—C2—C3—C4  | 30.0 (2)   | C5—O5—C14—C15   | -170.2 (2) |
| C1—O4—C4—C5  | 158.4 (2)  | C6—N1—C16—C17   | 76.4 (4)   |
| C1—O4—C4—C3  | 36.7 (3)   | C7—N1—C16—C17   | -158.4 (3) |
| O3—C3—C4—O4  | -161.9 (2) | N1—C16—C17—C22  | 33.4 (5)   |
| C7—C3—C4—O4  | 75.6 (3)   | N1—C16—C17—C18  | -151.1 (4) |
| C2—C3—C4—O4  | -41.2 (2)  | C22—C17—C18—C19 | 0.5 (6)    |
| O3—C3—C4—C5  | 76.7 (3)   | C16—C17—C18—C19 | -175.2 (4) |
| C7—C3—C4—C5  | -45.7 (3)  | C17—C18—C19—C20 | 0.6 (8)    |
| C2—C3—C4—C5  | -162.5 (2) | C18—C19—C20—C21 | -1.8 (8)   |
| C14—O5—C5—C6 | -149.2 (2) | C19—C20—C21—C22 | 1.9 (7)    |
| C14—O5—C5—C4 | 87.9 (3)   | C18—C17—C22—C21 | -0.5 (5)   |
| 04—C4—C5—O5  | 53.6 (3)   | C16—C17—C22—C21 | 175.2 (3)  |
| C3—C4—C5—O5  | 170.1 (2)  | C20-C21-C22-C17 | -0.7 (6)   |

Hydrogen-bond geometry (Å, °)

| D—H···A                                 | <i>D</i> —Н | $H \cdots A$ | $D \cdots A$ | D—H··· $A$ |
|-----------------------------------------|-------------|--------------|--------------|------------|
| C2—H2A…O7                               | 0.98        | 2.31         | 2.693 (3)    | 102        |
| С5—Н5А…О9                               | 0.98        | 2.30         | 2.666 (4)    | 101        |
| С7—Н7А…О8                               | 0.97        | 2.50         | 3.067 (4)    | 117        |
| C15—H15C···O6 <sup>i</sup>              | 0.96        | 2.33         | 3.161 (5)    | 144        |
| Symmetry codes: (i) $x-1$ , $y$ , $z$ . |             |              |              |            |



Fig. 1

Fig. 2

